高考物理考点(高中物理哪些知识点重要)

2024-04-01 11:49:07

一、运动学的基本概念

1、参考系: 运动是绝对的,静止是相对的。一个物体是运动的还是静止的,都是相对于参考系在而言的。通常以地面为参考系。

2、质点:

(1)定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。

(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否看成质点,要具体问题具体分析。

(3)物体可被看做质点的几种情况:

①平动的物体通常可视为质点。

②有转动但相对平动而言可以忽略时,也可以把物体视为质点。

③同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。

注质点并不是质量很小的点,要区别于几何学中的“点”。

3、时间和时刻:

时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。

4、位移和路程:

位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;

路程是质点运动轨迹的长度,是标量。

5、速度:

用来描述质点运动快慢和方向的物理量,是矢量。

(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为

,方向与位移的方向相同。平均速度对变速运动只能作粗略的描述。

(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。瞬时速度的大小简称速率,它是一个标量。

6、加速度:用量描述速度变化快慢的的物理量,其定义式为

加速度是矢量,其方向与速度的变化量方向相同(注意与速度的方向没有关系),大小由两个因素决定。

补充:速度与加速度的关系

1、速度与加速度没有必然的关系,即:

(1)速度大,加速度不一定也大;

(2)加速度大,速度不一定也大;

(3)速度为零,加速度不一定也为零;

(4)加速度为零,速度不一定也为零。

2、当加速度a与速度V方向的关系确定时,则有:

(1)若a 与V方向相同时,不管a如何变化,V都增大。

(2)若a 与V方向相反时,不管a如何变化,V都减小。

二、匀变速直线运动的规律及其应用:

1、定义:在任意相等的时间内速度的变化都相等的直线运动。

2、匀变速直线运动的基本规律,可由下面四个基本关系式表示:

(1)速度公式

(2)位移公式

(3)速度与位移式

(4)平均速度公式

3、几个常用的推论:

(1)任意两个连续相等的时间T内的位移之差为恒量

△x=x2-x1=x3-x2=……=xn-xn-1=aT2

(2)某段时间内时间中点瞬时速度等于这段时间内的平均速度,

(3)一段位移内位移中点的瞬时速度v中与这段位移初速度v0和末速度vt的关系为

4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论:

①1T末,2T末,3T末……瞬时速度之比为:

v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n

②第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:

x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)

③1T内,2T内,3T内……位移之比为:

xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2

④通过连续相等的位移所用时间之比为:

t1∶t2∶t3∶……∶tn=

三、自由落体运动,竖直上抛运动

1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。

2、自由落体运动规律:

①速度公式:

②位移公式:

③速度—位移公式:

④下落到地面所需时间:

3、竖直上抛运动:

可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。

(1)竖直上抛运动规律

①速度公式:

②位移公式:

③速度—位移公式:

两个推论:

上升到最高点所用时间:

上升的最大高度:

(2)竖直上抛运动的对称性

如下图,物体以初速度v0竖直上抛, A、B为途中的任意两点,C为最高点,则:

(1)时间对称性

物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。

(2)速度对称性

物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。

注在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解。

四、运动的图象,运动的相遇和追及问题

1、图象:

(1)x—t图象

①物理意义:反映了做直线运动的物体的位移随时间变化的规律。

②表示物体处于静止状态

③图线斜率的意义:

图线上某点切线的斜率的大小表示物体速度的大小;

图线上某点切线的斜率的正负表示物体方向。

④两种特殊的x-t图象

匀速直线运动的x-t图象是一条过原点的直线;

若x-t图象是一条平行于时间轴的直线,则表示物体处于静止状态。

(2)v—t图象

①物理意义:反映了做直线运动的物体的速度随时间变化的规律。

②图线斜率的意义:

a. 图线上某点切线的斜率的大小表示物体运动的加速度的大小

b. 图线上某点切线的斜率的正负表示加速度的方向

③图象与坐标轴围成的“面积”的意义:

a. 图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。

b. 若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时间轴的下方,表示这段时间内的位移方向为负方向。

③常见的两种图象形式:

a. 匀速直线运动的v-t图象是与横轴平行的直线

b. 匀变速直线运动的v-t图象是一条倾斜的直线

2、相遇和追及问题:

这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件,通常有两种情况:

(1)物体A追上物体B:开始时,两个物体相距x0,则A追上B时必有,且。

(2)物体A追赶物体B:开始时,两个物体相距x0,要使A与B不相撞,则有

易错现象:

1、混淆x—t图象和v-t图象,不能区分它们的物理意义

2、不能正确计算图线的斜率、面积

3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退

五、力 重力 弹力 摩擦力

1、力:

力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

按照力命名的依据不同,可以把力分为:

①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

力的作用效果:

①形变;

②改变运动状态.

2、重力:

由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定。

注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

3、弹力:

(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。

(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

(4)大小:

①弹簧的弹力大小由F=kx计算

②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或牛顿定律确定

4、摩擦力:

(1)摩擦力产生的条件:接触面粗糙、有弹力作用、有相对运动(或相对运动趋势),三者缺一不可

(2)摩擦力的方向:跟接触面相切,与相对运动或相对运动趋势方向相反,但注意摩擦力的方向和物体运动方向可能相同,也可能相反,还可能成任意角度。

(3)摩擦力的大小:

① 滑动摩擦力:

说明:

a. FN为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

b.?为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力FN无关。

② 静摩擦:由物体的平衡条件或牛顿第二定律求解,与正压力无关。

大小范围0<f静<fm (fm为最大静摩擦力,与正压力有关)

静摩擦力的具体数值可用以下方法来计算:一是根据平衡条件,二是根据牛顿第二定律求出合力,然后通过受力分析确定。

(4)注意事项:

a. 摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

b. 摩擦力可以作正功,也可以作负功,还可以不作功。

c. 摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d. 静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

易错现象:

1. 不会确定系统的重心位置

2. 没有掌握弹力、摩擦力有无的判定方法

3. 静摩擦力方向的确定错误

六、力的合成和分解

1、标量和矢量:

(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。

(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。

(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。

2、力的合成与分解:

(1)合力与分力

(2)共点力的合成:

①共点力

几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。

②力的合成方法

求几个已知力的合力叫做力的合成。

3、平行四边形定则:

两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。

求、的合力公式:

注意:

(1)力的合成和分解都均遵从平行四边行法则。

(2)两个力的合力范围:

(3)合力可以大于分力、也可以小于分力、也可以等于分力

(4)两个分力成直角时,用勾股定理或三角函数。

注意事项:

(1)力的合成与分解,体现了用等效的方法研究物理问题

(2)合成与分解是为了研究问题的方便而引入的一种方法,用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力,而不能同时考虑合力

(3)共点的两个力合力的大小范围是:|F1-F2|≤F合≤Fl+F2

(4)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零

(5)力的分解时要认准力作用在物体上产生的实际效果,按实际效果来分解

(6)力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)

易错现象:

1. 对含静摩擦力的合成问题没有掌握其可变特性

2. 不能按力的作用效果正确分解力

3. 没有掌握正交分解的基本方法

七、受力分析

1、受力分析:

要根据力的概念,从物体所处的环境(与多少物体接触,处于什么场中)和运动状态着手,其常规如下:

(1)确定研究对象,并隔离出来;

(2)先画重力,然后弹力、摩擦力,再画电、磁场力;

(3)检查受力图,找出所画力的施力物体,分析结果能否使物体处于题设的运动状态(静止或加速),否则必然是多力或漏力;

(4)合力或分力不能重复列为物体所受的力

2、整体法和隔离体法

(1)整体法:就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。

(2)隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑物体对其它物体的作用力。

(3)方法选择

所涉及的物理问题是整体与外界作用时,应用整体分析法,可使问题简单明了,而不必考虑内力的作用;当涉及的物理问题是物体间的作用时,要应用隔离分析法,这时原整体中相互作用的内力就会变为各个独立物体的外力。

3、注意事项:

正确分析物体的受力情况,是解决力学问题的基础和关键,在具体操作时应注意:

(1)弹力和摩擦力都是产生于相互接触的两个物体之间,因此要从接触点处判断弹力和摩擦力是否存在,如果存在,则根据弹力和摩擦力的方向,画好这两个力

(2)画受力图时要逐一检查各个力,找不到施力物体的力一定是无中生有的.同时应只画物体的受力,不能把对象对其它物体的施力也画进去

易错现象:

1. 不能正确判定弹力和摩擦力的有无;

2. 不能灵活选取研究对象;

3. 受力分析时受力与施力分不清。

八、共点力作用下物体的平衡

1、物体的平衡:

物体的平衡有两种情况:一是质点静止或做匀速直线运动;二是物体不转动或匀速转动(此时的物体不能看作质点)

2、共点力作用下物体的平衡:

①平衡状态:静止或匀速直线运动状态,物体的加速度为零

②平衡条件:合力为零,亦即F合=0或∑Fx=0,∑Fy=0

a、二力平衡:这两个共点力必然大小相等,方向相反,作用在同一条直线上。

b、三力平衡:这三个共点力必然在同一平面内,且其中任何两个力的合力与第三个力大小相等,方向相反,作用在同一条直线上,即任何两个力的合力必与第三个力平衡

c、若物体在三个以上的共点力作用下处于平衡状态,通常可采用正交分解,必有:

F合x= F1x+ F2x + ………+ Fnx =0

F合y= F1y+ F2y + ………+ Fny =0 (按接触面分解或按运动方向分解)

③平衡条件的推论:

当物体处于平衡状态时,它所受的某一个力与所受的其它力的合力等值反向;

当三个共点力作用在物体(质点)上处于平衡时,三个力的矢量组成一封闭的三角形按同一环绕方向。

3、平衡物体的临界问题:

当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)时的转折状态叫临界状态。可理解成“恰好出现”或“恰好不出现”。

临界问题的分析方法:

极限分析法:通过恰当地选取某个物理量推向极端(“极大”、“极小”、“极左”、“极右”)从而把比较隐蔽的临界现象(“各种可能性”)暴露出来,便于解答。

易错现象:

(1)不能灵活应用整体法和隔离法;

(2)不注意动态平衡中边界条件的约束;

(3)不能正确制定临界条件。

九、牛顿运动三定律

1、牛顿第一定律:

(1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

(2)理解:

①它说明了一切物体都有惯性,惯性是物体的固有性质.质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关)

②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因

③它是通过理想实验得出的,它不能由实际的实验来验证

2、牛顿第二定律:

内容:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同

公式:

理解:

①瞬时性:力和加速度同时产生、同时变化、同时消失

②矢量性:加速度的方向与合外力的方向相同

③同体性:合外力、质量和加速度是针对同一物体(同一研究对象)

④同一性:合外力、质量和加速度的单位统一用SI制主单位⑤相对性:加速度是相对于惯性参照系的

3、牛顿第三定律:

(1)内容:

两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上

(2)理解:

①作用力和反作用力的同时性。它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。

②作用力和反作用力的性质相同,即作用力和反作用力是属同种性质的力。

③作用力和反作用力的相互依赖性:它们是相互依存,互以对方作为自己存在的前提。

④作用力和反作用力的不可叠加性。作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。

4、牛顿运动定律的适用范围:

对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理。

易错现象:

(1)错误地认为惯性与物体的速度有关,速度越大惯性越大,速度越小惯性越小;另外一种错误是认为惯性和力是同一个概念。

(2)不能正确地运用力和运动的关系分析物体的运动过程中速度和加速度等参量的变化。

(3)不能把物体运动的加速度与其受到的合外力的瞬时对应关系正确运用到轻绳、轻弹簧和轻杆等理想化模型上。

十、牛顿运动定律的应用(一)

1、运用牛顿第二定律解题的基本思路

(1)通过认真审题,确定研究对象

(2)采用隔离体法,正确受力分析

(3)建立坐标系,正交分解力

(4)根据牛顿第二定律列出方程

(5)统一单位,求出答案

2、解决连接体问题的基本方法是:

(1)选取最佳的研究对象。选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法.一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究

(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案

3、解决临界问题的基本方法是:

(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件

(2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件

易错现象:

(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。

(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。

(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的最大静摩擦力。

十一、牛顿运动定律的应用(二)

1、动力学的两类基本问题:

(1)已知物体的受力情况,确定物体的运动情况,基本解题思路是:

①根据受力情况,利用牛顿第二定律求出物体的加速度

②根据题意,选择恰当的运动学公式求解相关的速度、位移等

(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:

①根据运动情况,利用运动学公式求出物体的加速度

②根据牛顿第二定律确定物体所受的合外力,从而求出未知力

(3)注意点:

①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键

②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化

2、关于超重和失重:

在平衡状态时,物体对水平支持物的压力大小等于物体的重力。当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力。当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象。

当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象。对其理解应注意以下三点:

(1)当物体处于超重和失重状态时,物体的重力并没有变化

(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向

(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等

易错现象:

(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。

(2)些同学在解比较复杂的问题时不认真审清题意,不注意题目条件的变化,不能正确分析物理过程,导致解题错误。

(3)一些同学对超重、失重的概念理解不清,误认为超重就是物体的重力增加啦,失重就是物体的重力减少了。

高考物理丨高中物理基础知识点整理,很实用!

高考物理热力学知识点总结

 (一)改变物体内能的两种方式:做功和热传递

 1.做功:其他形式的能与内能之间相互转化的过程,内能改变了多少用做功的数值来量度,外力对物体做功,内能增加,物体克服外力做功,内能减少。

 2.热传递:它是物体间内能转移的过程,内能改变了多少用传递的热量的数值来量度,物体吸收热量,物体的内能增加,放出热量,物体的内能减少,热传递的方式有:传导、对流、辐射,热传递的条件是物体间有温度差。

 (二)热力学第一定律

 1.内容:物体内能的增量等于外界对物体做的功W和物体吸收的热量Q的总和。

 2.符号法则:外界对物体做功,W取正值,物体对外界做功,W取负值,吸收热量Q取正值,物体放出热量Q取负值;物体内能增加取正值,物体内能减少取负值。

 (三)能的转化和守恒定律

 能量既不能凭空产生,也不能凭空消失,它只能从一种形式转化为另一种形式或从一个物体转移到另一个物体。在转化和转移的过程中,能的总量不变,这就是能量守恒定律。

 (四)热力学第二定律

 两种表述:(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化。

 (2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其他变化。

 热力学第二定律揭示了涉及热现象的宏观过程都有方向性。

 (3)热力学第二定律的微观实质是:与热现象有关的自发的宏观过程,总是朝着分子热运动状态无序性增加的方向进行的。

 (4)熵是用来描述物体的无序程度的物理量。物体内部分子热运动无序程度越高,物体的熵就越大。

 注:1.第一类永动机是永远无法实现的,它违背了能的转化和守恒定律。

 2.第二类永动机也是无法实现的,它虽然不违背能的转化和守恒定律,但却违背了热力学第二定律。

  高考难点之动力学分析

 纵观整个高中物理,最难的地方还是在于力学。如果你是一位十年教龄的老师,相信您绝对认可我的这句话。

 貌似有不少的老师总是把“力学是物理的基础”挂在嘴边(咦,好像我也是这个样子的),这也是一个大实话;但这总是被学生误解,他们会认为物理中的力学问题都很基本的、简单的。

 其实往往情况相反,力学的很多问题,真的很难。如果你觉得自己没有遇到过力学难题,那说明你物理学得还不错,推荐你去买本物理竞赛的书看看吧。一天之内保证让你感慨:TMD,原来力学这么难啊!

 插入一句哈,有意向自主招生的同学,高一就开始准备点竞赛的书看看吧。高中老师可不像是初中老师一样当你的保姆,一切都考你自己,尤其是重点中学。回来了啊,接着说物理的问题。

 如果是静电场的问题,难度就在于判定电场的分布情况以及运动模式,这一点2011年的北京高考理综物理压轴题考察的比较好。

 至于电磁感应的问题,难点往往在于电路与电热的分析,如果命题者在力学上面玩狠些的,也比较讨厌。

 好了,我们好像有点跑题了,还是回归下,来说力学的问题。

 我们的力学模块非常清晰,这也就是为什么多次进行力学体系的改革总是换汤不换药。整个高中物理的力学部分只有三大部分,分别是:

 (1)牛顿动力学(包括直线运动、受力分析与牛顿定律);

 (2)曲线运动(包括平抛运动、圆周运动、天体运动);

 (3)机械能与动量。

  高考物理的第二轮复习建议

 1、要把整个知识网络化,系统化,把所有的知识连成线,铺成面,织成网。疏理出知识结构,把握知识模块,将知识进行专题整理

 2、针对自己可能存在的问题、有效地补缺补差。

 3、总结考试中出错问题和作题中的共性问题,对问题进行集中整理、集中强化训练与矫正。

 4、归纳解题方法,归纳题型。

 5、训练如何分析物理过程,如何寻找陌生题的突破口,如何提高熟题的解题准确率。

 6、回头是岸,注重双基,熟透知识,题型,方法

 7、积累解题,应试经验,对每次考试都写出书面总结分析

物理的基础知识包括:

(1)静力学

(2)运动学?

(3)运动定律?

(4)圆周运动 万有引力

(5)机械能

(6)动量 ?

(7)振动和波?

(8)热学

(9)静电学:

(10)恒定电流?

(11)磁场

(12)电磁感应

?(13)交流电

(14)电磁场和电磁波

(15)光的反射和折射?

(16)光的本性?

(17)原子物理

(18)物理发现史

一、静力学:

二、运动学:

三、运动定律:

四、圆周运动?万有引力:

五、机械能:

六、动量:

七、振动和波:

1.物体做简谐振动

1.1在平衡位置达到最大值的量有速度、动量、动能

1.2在最大位移处达到最大值的量有回复力、加速度、势能

1.3通过同一点有相同的位移、速率、回复力、加速度、动能、势能,只可能有不同的运动方向

1.4经过半个周期,物体运动到对称点,速度大小相等、方向相反。

1.5半个周期内回复力的总功为零,总冲量为,路程为2倍振幅。

1.6经过一个周期,物体运动到原来位置,一切参量恢复。

1.7一个周期内回复力的总功为零,总冲量为零。路程为4倍振幅。

2.波传播过程中介质质点都作受迫振动,都重复振源的振动,只是开始时刻不同。

?波源先向上运动,产生的横波波峰在前;波源先向下运动,产生的横波波谷在前。

?波的传播方式:前端波形不变,向前平移并延伸。

3.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”。

4.波形图上,介质质点的运动方向:“上坡向下,下坡向上”

5.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比。

6.波发生干涉时,看不到波的移动。振动加强点和振动减弱点位置不变,互相间隔。

八、热学

1.阿伏加德罗常数把宏观量和微观量联系在一起。

宏观量和微观量间计算的过渡量:物质的量(摩尔数)。

2.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。

3.一定质量的理想气体,内能看温度,做功看体积,吸放热综合以上两项用能量守恒分析。

九、静电学:

十、恒定电流:

直流电实验:

十一、磁场:

十二、电磁感应:

十三、交流电:

十四、电磁场和电磁波:

1.麦克斯韦预言电磁波的存在,赫兹用实验证明电磁波的存在。

2.均匀变化的A在它周围空间产生稳定的B,振荡的A在它周围空间产生振荡的B。

十五、光的反射和折射:

1.光由光疏介质斜射入光密介质,光向法线靠拢。

2.光过玻璃砖,向与界面夹锐角的一侧平移;光过棱镜,向底边偏转。

4.从空气中竖直向下看水中,视深=实深/n

4.光线射到球面和柱面上时,半径是法线。

5.单色光对比的七个量:

十六、 光的本性:

十七、 原子物理:

十八、物理发现史

1、胡克:英国物理学家;发现了胡克定律(F弹=kx)

2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。

3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。

4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。

5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。

6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。

7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。

8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。

9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。

10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。

11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。

12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。

13、安培:法国科学家;提出了著名的分子电流假说。

14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。

15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。

16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。

17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。

18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。

19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。

20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。

21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)

22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。

23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。

24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论。提出了“质能方程”。

25、德布罗意:法国物理学家;提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应。

26、卢瑟福:英国物理学家;通过α粒子的散射现象,提出原子的核式结构;首先实现了人工核反应,发现了质子。

27、玻尔:丹麦物理学家;把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论。

28、查德威克:英国物理学家;从原子核的人工转变实验研究中,发现了中子。

29、威尔逊:英国物理学家;发明了威尔逊云室以观察α、β、γ射线的径迹。

TAGS:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;
2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;
3.作者投稿可能会经我们编辑修改或补充。

搜索
排行榜
标签列表